Coastal RESILIENCE

Helping Communities Plan for Change

Coastal Resilience for Habitats and Humans

Redefining Infrastructure

Habitats protecting human communities

A vulnerable estuary? A vulnerable community?

Estuaries and Communities: Risk and Resiliency

Science informed decisions

Decision Support Tools

Vulnerability Indices

Infrastructure Vulnerability - Dike Freeboard

Integrating Sea Level Rise and Storm Surge

12" of SLR turns a 100-year coastal flood into a 10-year event 24" of SLR turns a 100-year coastal flood into an *annual* event

Incorporates Physical Processes Across Environmental Gradients

Tidal Variability

Storm Surge

Vertical Land Movements

Sedimentation

River Flood - Backwater

Nearshore Waves

Wave Attenuation: Shore morphology & vegetation

Eelgras

Bare

Bare

Eelgrass

Coastal Resilience Network

Coastal RESILIENCE

Helping Communities Plan for Change

COLLABORATIVE GROUP OF SCIENTISTS:

Zach Ferdana, The Nature Conservancy, Global Marine Team

Roger Fuller, The Nature Conservancy of WA

Eric Grossman, U. S. Geological Survey

Alan Hamlet, University of WA, Climate Impacts Group

Julie Morse, The Nature Conservancy of WA